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Abstract
A ∂-approach is adopted to study the dispersionless Harry Dym (dHD)
hierarchy. Moreover, this formulism is applied to construct some explicit
solutions of the dHD hierarchy.

PACS number: 02.30.Ik

1. Introduction

The Lax formalism of dispersionless integrable systems (see [24] for a review) is defined by
algebra � of Laurent series

∑
i ai(X, T1, T2, . . .)p

i . One can check that, with respect to the
Poisson bracket {f, g} = ∂f

∂p

∂g

∂X
− ∂f

∂X

∂g

∂p
where f, g are all in the algebra �, there are only

three closed subalgebra decompositions of �

� = ��k ⊕ �<k, k = 0, 1, 2,

with ��k = {∑
�k ai(X, T1, T2, . . .)p

i
}
, and �<k = {∑

<k ai(X, T1, T2, . . .)p
i
}
. Hence

from this classification, one can introduce dispersionless Lax hierarchies as follows,

∂L
∂Tn

= {Bn,L}, Bn = (Ln)�k

in which the dispersionless Kadomtsev–Petviashvili (dKP) [11, 13, 19], the dispersionless
modified Kadomtsev–Petviashvili (dmKP) [20, 21, 4] and the dispersionless Harry Dym
(dHD) [21] hierarchies are three basic Lax hierarchies as they correspond to cases k = 0, 1
and 2, respectively. Besides, the Lax formalism of the dispersionless Toda (dToda) hierarchy
was established by considering a pair of Lax operators [12, 24].

Different methods have been used to study dispersionless equations and hierarchies. In
particular, for those finite-dimensional reductions of dispersionless Lax hierarchies that are
hierarchy flows of hydrodynamic type and can be diagonalized by Riemann invariants, one
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can solve them by the hodograph method so that their solutions are expressed in implicit
form (see, e.g., [11, 13, 12, 8]). Recently, the quasiclassical ∂̄-dressing approach to the dKP,
dmKP and dToda hierarchies has been proposed and studied well by Konopelchenko et al
[16, 17]. This approach can be viewed as the quasiclassical limit of the nonlocal Riemann–
Hilbert problem (see, e.g., [15]) and directly relates dispersionless integral hierarchies with
quasiconformal mapping on the plane. Hence one can present some explicit solutions of
dispersionless integral hierarchies by the widely studied theory of quasiconformal mappings.
In [18], Konopelchenko et al justified that some solutions may not be obtained by standard
hodograph transformation methods. Therefore, motivated by this observation, we shall show
the ∂-approach may complement the hodograph method [6, 7] for constructing solutions of
the dHD system.

In this paper, we shall adapt Konopelchenko’s formalism to study the dHD hierarchy.
In this approach the analytic property of the S function (or the WKB phase function of the
Baker–Akhiezer function [11]) defined by the Beltrami equation plays an essential role for
deriving an explicit solution of the dHD hierarchy. Our result presents a new class of finite-
dimensional solutions to the dHD hierarchy which were not obtained in the previous literature
[6–8]. This paper is organized as follows. We review the ∂̄-problem of the HD hierarchy
and introduce the reciprocal formula between the HD and mKP hierarchies in section 2. In
section 3, we introduce the quasiclassical ∂̄-problem of the dHD hierarchy. In section 4, we
derive the reciprocal formula between the dHD and dmKP hierarchies from a new approach,
the ∂̄-approach. In sections 5 and 6, we use the quasiclassical ∂̄-problem to derive the dHD
hierarchy and to provide explicit solutions for the dHD flows.

2. The ∂-problem of the HD hierarchy

The HD hierarchy is an infinite set of the compatibility conditions for the system

L� = 1

λ
�,

∂�

∂tn
= (Ln)�2�, n � 2,

where L = u1(�t)∂ + u0(�t) + u−1(�t)∂−1 + u−2(�t)∂−2 + · · · , ∂ = ∂/∂x, �t = (x, t2, t3, . . .), λ is a
spectral parameter, (Ln)�2 denotes the pure differential part of the operator Ln with terms of
degree larger than 2, and �(�t, λ) is a wavefunction of the HD hierarchy. Since (L)�2 = 0, ui

do not depend on t1. The first nontrivial equation of Lax flow is the HD equation in 2+1
dimensions [14],

4u1t = u3
1u1xxx − 3

u1

(
u2

1

∫ x
(

1

u1

)
y

dx

)
y

(1)

which is the equation for coefficient u1 as a function of the first three independent variables
x, t2 = y, t3 = t . In particular, it is the compatibility of the Lax pair

M2� =
(

∂

∂y
− u2

1
∂2

∂x2

)
� = 0, (2)

M3� =
(

∂

∂t
− u3

1
∂3

∂x3
− 3

2
u2

1

[
∂u1

∂x
−

(
∂

∂x

)−1 ( 1

u1

)
y

]
∂2

∂x2

)
� = 0. (3)
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The ∂-problem of the HD hierarchy is the study of the Cauchy integral formula of the
wavefunction � of the Lax pair (2), (3) [10] and their higher order operators M4,M5, . . . [15].
The ∂-dressing formula, i.e. the Cauchy integral formula, which we consider is written as

χ(�t, λ, λ̄) = 1 +
1

2π i

∫ ∫ ∫ ∫
χ(�t, µ, µ̄)R(�t, µ, µ̄, ξ, ξ̄ )

ξ − λ
dvµ dvξ , (4)

with

�(�t, λ, λ̄) = χ(�t, λ, λ̄) exp

(
f (�t)
λ

+
t2

λ2
+

t3

λ3
+ · · ·

)
, (5)

R(�t, µ, µ̄, ξ, ξ̄ ) = R0(µ, µ̄, ξ, ξ̄ ) exp

(
f (�t)

(
1

µ
− 1

ξ

)

+ t2

(
1

µ2
− 1

ξ 2

)
+ t3

(
1

µ3
− 1

ξ 3

)
+ · · ·

)
,

dvµ = dµ ∧ dµ̄, dvξ = dξ ∧ dξ̄ .

The function f (�t) has to fulfil systems of nonlinear constraints. For the HD case, using (2),
(3) and (5), f satisfies

u1 = 1

fx

, (6)

fy − fxx

f 2
x

− 2

fx

χ0x

χ0
= 0, (7)

ft − fxxx

f 3
x

+
3

2
f 2

y +
3

2

f 2
xx

f 4
x

− 3

2

χ0y

χ0
− 3

2f 2
x

χ0xx

χ0
= 0, (8)

with χ0 = χ(λ = 0), χ0x = ∂χ

∂x
(λ = 0), χ0y = ∂χ

∂y
(λ = 0), etc. The nonlinear constraints

(6)–(8) can also be understood through the famous reciprocal formula between the mKP and
HD hierarchies [10, 23, 9]:

x ′ = f (�t), t ′n = tn, n � 2, (9)

x = φ′(�t ′), tn = t ′n, n � 2, (10)

χ(�t, λ, λ̄) = χ ′(x ′, t ′2, . . . , λ, λ̄), (11)

�(�t, λ, λ̄) = � ′(x ′, t ′2, . . . , λ, λ̄), (12)

where �t ′n = (x ′ = t ′1, . . .) are time variables of the mKP hierarchy, f is defined as in (5)
and χ ′, � ′ are the normalized wavefunction and the wavefunction of the corresponding mKP
hierarchy. Note that the reciprocal transformation is isospectral. Under the reciprocal formula
(9)–(11), formula (7) and (8) are reduced to:

M ′
2φ

′ =
(

∂

∂y ′ − ∂2

∂x ′2 − 2v0
∂

∂x ′

)
φ′ = 0,

M ′
3φ

′ =
(

∂

∂t ′
− ∂3

∂x ′3 − 3v0
∂2

∂x ′2 − 3

2

[
v2

0 +
∂v0

∂x ′ +

(
∂

∂x ′

)−1

(v0)y

]
∂

∂x ′

)
φ′ = 0,

with v0 = −χ ′
0x′
χ ′

0
= −χ0x′

χ0
, which is just the Lax pair of the mKP equation:

v0t ′ = − 3
2v2

0v0x ′ + 3
2v0x ′∂−1

x ′ v0y ′ + 3
4∂−1

x ′ v0y ′y ′ .

Hence φ′ is an mKP wavefunction.
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3. Quasiclassical ∂-problem

To derive the quasiclassical limit of the ∂̄-problem (4), we introduce the slow time variables
�T = ε�t, �T = (X, T2, T3, . . .), and let ε → 0. In this limit, we look for solutions χ , f of the
form

exp

(
1

λ
f

( �T
ε

)
+

1

λ2

T2

ε
+

1

λ3

T3

ε
+ · · ·

)
→ exp

(
S0( �T , λ)

ε
+ O(ε)

)
(13)

S0( �T , λ) = 1

λ
f̃ ( �T ) +

T2

λ2
+

T3

λ3
+ · · · (14)

χ( �T /ε, λ, λ̄) = χ̂( �T , ε, λ, λ̄) exp

(
S̃( �T , λ, λ̄)

ε

)
, (15)

χ̂ ( �T , ε, λ, λ̄) =
∞∑

n=0

χ̂n( �T , λ, λ̄)εn, (16)

S̃( �T , λ, λ̄) → O(|λ|−1), as λ → ∞ (17)

S̃( �T , λ, λ̄) → Ŝ0( �T ) + Ŝ1( �T )λ + Ŝ2( �T )λ2 + · · · , as λ → 0, (18)

and consider scattering data R0 of the form

R0(µ, µ̄, ξ, ξ̄ ) =
∞∑

k=0


k(µ, µ̄)εk−1δ(k)
µ (µ − ξ),

where δ(k)
µ (µ − ξ) = ∂k

µδ(µ − ξ). Then the quasiclassical limit of (4) yields

∂λ̄χ̂ +
1

ε
χ̂∂λ̄S =

∫
C

χ̂ exp

(
1

ε
(S(µ) − S(λ))

) ∞∑
k=0


k(µ, µ̄)εk−1δ(k)
µ (µ − λ) dvµ, (19)

where

S = S0 + S̃. (20)

The terms of 1/ε in (19) result in the quasiclassical ∂̄-problem

∂S

∂λ̄
= W

(
λ, λ̄,

∂S

∂λ

)
, W

(
λ, λ̄,

∂S

∂λ

)
=

∞∑
k=0


k(λ, λ̄)

(
∂S

∂λ

)k

. (21)

4. The reciprocal formula

We now justify that the quasiclassical limit (13)–(21) under the reciprocal formulae (9)–(12)
is indeed transformed into that of the mKP hierarchy. More precisely,

Proposition 1. Suppose (13)–(18) hold. Define �T ′ = ε�t ′, �T ′ = (X′, T ′
2, T

′
3, . . .) and �t ′ is the

corresponding mKP-time variable defined by (9). Then

X′ = f̃ ( �T ), T ′
n = Tn, n � 2, (22)

X = �′( �T ′), Tn = T ′
n, n � 2, (23)

and �′ satisfies:

∂�′

∂T ′
n

= {((L̃′)n)�1,�
′}[0], (24)
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with L̃′ = p + ṽ0 + ṽ−1

p
+ ṽ−2

p2 + · · · , (f )[k] = ak , for f = ∑
ai( �T )pi . Moreover, let

S ′(T ′, λ, λ̄) = S( �T , λ, λ̄). (25)

Then

S ′ = S ′
0 + S̃ ′, (26)

S ′
0 = X′

λ
+

T ′
2

λ2
+

T ′
3

λ3
+ · · · , (27)

S̃ ′(�t ′, λ, λ̄) → O(|λ|−1), as λ → ∞, (28)

S̃ ′( �T ′, λ, λ̄) → Ŝ ′
0 + Ŝ ′

1λ + · · · , as λ → 0, (29)

∂S ′

∂λ̄
= W

(
λ, λ̄,

∂S ′

∂λ

)
. (30)

Proof. For convenience, we quote the proof in [5] to show (22)–(24). Using (13) and (14),
we have

exp

(
1

λ
f

( �T
ε

)
+

1

λ2

T2

ε
+

1

λ3

T3

ε
+ · · ·

)
→ exp

(
1

ε

(
1

λ
f̃ ( �T ) +

T2

λ2
+

T3

λ3
+ · · ·

)
+ O(ε)

)
.

(31)

Besides, (9), �T = ε�t , and the assumption �T ′ = ε�t ′ imply

exp

(
1

λ
f

( �T
ε

)
+

1

λ2

T2

ε
+

1

λ3

T3

ε
+ · · ·

)
= exp

(
x ′

λ
+

t ′2
λ2

+
t ′3
λ3

+ · · ·
)

= exp

(
1

ε

(
X′

λ
+

T ′
2

λ2
+

T ′
3

λ3
+ · · ·

))
. (32)

Comparing (31) and (32), we conclude (22). Hence we define (23) with �′ being the inverse
map of f̃ .

On the other hand, by (10), Tn = εtn and T ′
n = εt ′n, we obtain X = εφ′( �T ′

ε

)
. Thus

φ′( �T ′
ε

) = 1
ε
�′( �T ′). Plugging this identity and T ′

n = εt ′n in the Lax representation of the mKP
hierarchy

∂φ′

∂t ′n
(�t ′) = (L′n)�1 φ′(�t ′),

where L′ = ∂ ′ + v0 + v−1∂
′−1 + v−2∂

′−2 + · · · , ∂ ′ = ∂/∂x ′, vi( �T ′/ε) = ṽi ( �T ′) +O(ε). We find,
as ε → 0,

∂φ′
∂t ′n

= ∂�′
∂T ′

n
and

(L′n)�1 φ′(�t ′) = 1

ε
(L′n)�1 �′ → 1

ε
(L′n)[1]∂

′�′ = {((L̃′)n)�1,�
′}[0].

So (24) is proved. At last, after identifying these time variables of the mKP and dmKP
hierarchies, we can repeat the process in section 3 to justify (26)–(30). �

In [16], the condition (26)–(30) is shown to be equivalent to the existence of a
dispersionless mKP hierarchy. Besides, we are going to show that (13)–(18) is equivalent
to the existence of a dHD hierarchy in the next section. Therefore, via the ∂̄-approach, we
derive a reciprocal formula or a Miura transformation between the dHD and dmKP hierarchies.
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5. Derivation of the dHD hierarchy

We are going to derive the dHD hierarchy by the linear Beltrami equation

∂

∂λ̄

(
∂S

∂Tj

)
= Ẇ

(
λ, λ̄,

∂S

∂λ

)
∂

∂λ

(
∂S

∂Tj

)
, (33)

which is obtained by taking derivatives of (21). Note that Ẇ means the derivative with respect
to the variable ∂S

∂λ
. The Beltrami equation possesses the following properties [2, 1] which will

be used in our derivation:

• (Vekua’s theorem) Under mild conditions on W , the only solution � of the Beltrami
equation (33) such that � = 0 at ∞ is � ≡ 0.

• (Ring of symmetry) If �1, . . . , �N are solutions of the Beltrami equation (33), a
differentiable function f (�1, . . . , �N) is also a solution of (33).

Lemma 1 [16]. The function S ′ defined in (26) satisfies

∂S ′

∂Y ′ −
(

∂S ′

∂X′

)2

− 2ṽ0
∂S ′

∂X′ = 0, (34)

∂S ′

∂T ′ −
(

∂S ′

∂X′

)3

− 3ṽ0

(
∂S ′

∂X′

)2

− 3
[
ṽ2

0 + ṽ−1
] ∂S ′

∂X′ = 0. (35)

Here we identify T ′
2, T

′
3 as Y ′ and T ′.

Proof. First of all, we note that ∂S ′/∂T ′
i are solutions of (21) from (30) and the ring of

symmetry property. Furthermore, (26)–(29) imply

∂S ′

∂X′ = 1

λ
+

∂Ŝ ′
0

∂X′ + λ
∂Ŝ ′

1

∂X′ + · · · , (36)

∂S ′

∂Y ′ = 1

λ2
+

∂Ŝ ′
0

∂Y ′ + λ
∂Ŝ ′

1

∂Y ′ + · · · , (37)

∂S ′

∂T ′ = 1

λ3
+

∂Ŝ ′
0

∂T ′ + λ
∂Ŝ ′

1

∂T ′ + · · · , (38)

as λ → 0, and

∂S ′

∂T ′
j

→ 0, as λ → ∞. (39)

Then (34), (35) can be directly derived from (36)–(39) and the Vekua theorem with

ṽ0 = −∂Ŝ ′
0

∂X′ , ṽ−1 = −∂Ŝ ′
1

∂X′ . �

Lemma 2. There exist constants A,B and C such that

∂S

∂Y
+ A

(
∂S

∂X

)2

= 0, (40)

∂S

∂T
+ B

(
∂S

∂X

)3

+ C

(
∂S

∂X

)2

= 0. (41)

Here we identify T2, T3 as Y and T.
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Proof. Using (20), (14), (17), (18), we have

∂S

∂X
= 1

λ

∂f̃

∂X
+

∂Ŝ0

∂X
+ λ

∂Ŝ1

∂X
+ · · · , (42)

∂S

∂Y
= 1

λ2
+

1

λ

∂f̃

∂Y
+

∂Ŝ0

∂Y
+ λ

∂Ŝ1

∂Y
+ · · · , (43)

∂S

∂T
= 1

λ3
+

1

λ

∂f̃

∂T
+

∂Ŝ0

∂T
+ λ

∂Ŝ1

∂T
+ · · · , (44)

as λ → 0. Also from (17), we have the properties

∂S

∂Tj

→ 0, as λ → ∞. (45)

Then using (33), (42)–(44), (45), Vekua’s theorem and the ring of symmetry property, we can
find A,B,C, r1 and r2 to assure

∂S

∂Y
+ A

(
∂S

∂X

)2

+ r1
∂S

∂X
= 0,

∂S

∂T
+ B

(
∂S

∂X

)3

+ C

(
∂S

∂X

)2

+ r2
∂S

∂X
= 0.

To show r1 = r2 = 0, we plug (25) and the reciprocal formula (23) in the above formula. This
leads to

∂S ′

∂Y ′ − �′
Y ′

�′
X′

∂S ′

∂X′ + A

(
1

�′
X′

∂S ′

∂X′

)2

+ r1

(
1

�′
X′

∂S ′

∂X′

)
= 0, (46)

∂S ′

∂T ′ − �′
T ′

�′
X′

∂S ′

∂X′ + B

(
1

�′
X′

∂S ′

∂X′

)3

+ C

(
1

�′
X′

∂S ′

∂X′

)2

+ r2

(
1

�′
X′

∂S ′

∂X′

)
= 0. (47)

Now using (24), we compute

�′
Y ′

�′
X′

= 2ṽ0,
�′

T ′

�′
X′

= 3
(
ṽ2

0 + ṽ−1
)
.

Plugging the above formula into (46), (47) and using lemma 1, we prove r1 = r2 = 0. �

Proposition 2. The dHD equation

ũ1T = 3

4
ũ−1

1

[
ũ2

1∂
−1
X

(
ũ1Y

ũ2
1

)]
Y

, (48)

which is just the quasiclassical limit of the ordinary (2 + 1)-dimensional HD equation (1) by
dropping the dispersion term, can be derived from the quasiclassical ∂̄-problem (21).

Proof. Equating the 1
λ

and 1
λ2 coefficients of (40) and using (42)–(44), we get

A = − 1

f̃ 2
X

,
∂f̃ X

∂Y
=

(
2

f̃ X

∂Ŝ0

∂X

)
X

. (49)

Now we define

ũ1 = 1

f̃ X

, u0 = −ũ1
∂Ŝ0

∂X
, ũ−1 = −∂Ŝ1

∂X
, (50)

or

f =
∫ X 1

ũ1
, Ŝ0 = −

∫ X ũ0

ũ1
, Ŝ1 = −

∫ X

ũ−1.
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Hence (49) implies
∂ũ1

∂Y
= 2ũ2

1ũ0X. (51)

Furthermore, equating the λ0 coefficient of (40) and using (42)–(50), we obtain∫ X
(

ũ0

ũ1

)
Y

= −ũ2
1

(
ũ2

0

ũ2
1

+
2

ũ1
Ŝ1 X

)
,

which, by (51), is equivalent to
ũ0 Y

ũ1
= 2(−ũ1Ŝ1 X)X.

Combining (50) with the above equation, we have
∂ũ0

∂Y
= 2ũ1(ũ1ũ−1)X. (52)

Similarly, the 1
λ3 and 1

λ2 -coefficients of (41) yield

B = − 1

f̃ 3
X

, C = −3ũ2
1ũ0.

Therefore the 1
λ

-coefficient of (41) and (50)–(52) imply

∂f̃

∂T
= −3

(
ũ2

0 + ũ1ũ−1
)
,

or equivalently
∂ũ1

∂T
= 3ũ2

1

(
ũ2

0 + ũ1ũ−1
)
X

. (53)

Finally, using (51), (52) to eliminate ũ0 and ũ−1 in (53), one obtains the dHD equation (48).
�

Similarly, we can use the analytical properties ∂S/∂Tn = 1/λn + f̃ Tn
/λ + ∂Ŝ0/∂Tn +

(∂Ŝ1/∂Tn)λ + · · · and the Vekua theorem to get

∂S

∂Tn

− 1

f̃ n
X

(
∂S

∂X

)n

−
n−1∑
k=2

Vnk( �T )

(
∂S

∂X

)k

= 0, n = 2, 3, . . . . (54)

Equating the coefficients of (54) as λ → 0 and computing their compatibility condition then
gives us higher flows in the dHD hierarchy. On the other hand, if we set p = ∂S/∂X, then
(54) is transformed into

∂p

∂Tn

= ∂Bn

∂X
, n = 1, 2, . . . ,

Bn = (Ln)�2, L =
∑
k�1

ũkp
k.

(55)

Moreover (55) is equivalent to
∂L
∂Tn

= {Bn,L}, n = 1, 2, . . . , (56)

by noting that they have the same compatibility condition. Here we write the first two dHD
flows (t2-, t3-flows) by equating the compatibility condition of (56) for n = 2, 3. That is:
∂ũ−k+1

∂Y
= 2ũ2

1
∂ũ−k

∂X
+ 2kũ1ũ−k

∂ũ1

∂X
, k � 0, (57)

∂ũ−k+1

∂T
= 3ũ3

1
∂ũ−k−1

∂X
+ 6ũ2

1ũ0
∂ũ−k

∂X
+ 3(k + 1)ũ2

1ũ−k−1
∂ũ1

∂X
+ 3kũ−k

∂
(
ũ2

1ũ0
)

∂X
, k � 0.

(58)
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6. Explicit solutions

We will consider the quasiclassical ∂̄-problem (21) of the special form

Sλ̄ = −λ2M

λ̄2
θ(|λ| − 1)(Sλ)

M, (59)

with the initial condition S| 1
λ̄
=0 = aN

λN + aN−1

λN−1 + · · · + a0. Here θ is the Heaviside function.

Under the transformation λ → 1
z
, the above quasiclassical ∂̄-problem is transformed into

Sz̄ = θ(1 − |z|)(Sz)
M, (60)

and S|z̄=0 = aNzN + aN−1z
N−1 + · · · + a0. Therefore the discussion of the previous section

implies that the dHD flows (54) are derived from the analytical properties:

S → O(|z|), as z → 0, (61)

S → TNzN + · · · + T2z
2 + f̃ ( �T )z + Ŝ0 +

Ŝ1

z
+ · · · , as z → ∞. (62)

Hence we can follow the method of characteristic used in [16] to solve (60) and get explicit
solutions of the dHD hierarchy.

Example 1. The case (M,N) = (2, 2): applying the method of characteristic, we obtain

S =
{

1
2

(z−b)2

a−2z̄
− c, |z| � 1

1
2

z(z−b)2

az−2 − c, |z| � 1.
(63)

Plugging condition (61) into the first equation of (63), we get c = b2

2a
. So the second equation

of (63) implies

S = 1

2a
z2 +

(
1

a2
− b

a

)
z +

2

a3
− 2b

a2
+ O

(
1

z

)
, as z → ∞.

Comparing the above formula with (62) and identifying Y = T2, we then have

a = 1

2Y
, b = 2Y − f̃

2Y
, c = Y

(
2Y − f̃

2Y

)2

, Ŝ0 = 4Y f̃ . (64)

To solve f̃ , we use the dynamic equation of the first flow (deriving from (61), (62) as (49)
in the proof of proposition 2):

f̃ Y = 2
Ŝ0X

f̃ X

. (65)

Plugging (64) into (65), we obtain

f̃ = 4Y 2 + g(X), b = − g

2Y
, c = g2

4Y
, Ŝ0 = 4Y (4Y 2 + g), (66)

where g is an arbitrary function on X. Now differentiating both sides of the second equation
of (63) with respect to X, using (64), (66) and recalling the definition of p = ∂S/∂X, we then
derive

z = 1

2


b − a(p + cX)

bX

+

√[
b − a(p + cX)

bX

]2

+
8

bX

(p + cX)




= p

2gX

+
1

2

√
p2

g2
X

− 16Yp

gX

− 8g
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= p

2gX

+
1

2

(
p

gX

− 8Y

)
1 − 64Y 2 + 8g(

p

gX
− 8Y

)2




1
2

= p

gX

− 4Y − (16Y 2 + 2g)
gX

p

(
1 +

8YgX

p
+

(
8YgX

p

)2

+ · · ·
)

− (16Y 2 + 2g)2 g3
X

p3

(
1 +

8YgX

p
+

(
8YgX

p

)2

+ · · ·
)3

+ · · · =
∑
k�1

ũkp
k

from which we have

ũ1 = 1

gX

, ũ0 = −4Y, ũ−1 = −gX(16Y 2 + 2g),

ũ−2 = −8Yg2
X(16Y 2 + 2g),

ũ−3 = −g3
X(16Y 2 + 2g)(80Y 2 + 2g), . . . .

(67)

Here g is an arbitrary function of X. One can check that (67) satisfies (57). Hence we obtain
an explicit solution for the first dHD flow.

Finally, we note

z = ũ1

2
p +

1

2

√
ũ2

1p
2 + 4ũ1ũ0p − 8g,

which is a two-reduction of the dHD hierarchy. This reduction cannot be obtained by standard
hodograph methods [11, 13] since

∂z(p, ũ)

∂p
=

ũ1
(
ũ1p + 2ũ0 +

√
(ũ1p + 2ũ0)2 − 4ũ2

0 − 8g
)

2
√

(ũ1p + 2ũ0)2 − 4ũ2
0 − 8g

which has no zeros provided that ũ1 �= 0 and hence the two-reduction HD system cannot be
diagonalized through the Riemann invariants z(pi) where pi are zeros of ∂z/∂p = 0.

Example 2. The case (M,N) = (3, 2): let Sz|z̄=0 = z
a + b and Y = T2. Using the method

of characteristic and condition (61), we obtain

S = −2m3

z
+

a

2
m2 − ab2

2
, |z| < 1,

m = 1

6z̄

(
a −

√
a2 − 12(z + ab)z̄

)
.

Holomorphically extending to |z| > 1 and comparing with the expansion

S = Yz2 + f̃ z + Ŝ0 + Ŝ1/z + · · ·
as z → ∞, we get

108Y = −a(a2 − 18) + (a2 − 12)3/2,

f̃ = ab

6

(
a −

√
a2 − 12

)
,

Ŝ0 = −ab2

2

(
1 − a√

a2 − 12

)
,

Ŝ1 = a3b3(a2 − 12)−3/2.
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Hence

a = 1

6Y
(D1/3 + (216Y 2 + 1)D−1/3 + 1),

D := −5832Y 4 − 540Y 2 + 1 + 24
√

3Y
√

19 683Y 6 − 2187Y 4 + 81Y 2 − 1,

b = 6f̃

a(a − √
a2 − 12)

.

It turns out that

f̃ Y = 2

f̃ X

∂Ŝ0

∂X
= 72f̃

a
√

a2 − 12(a − √
a2 − 12)

which implies

f̃ (X, Y ) = g(X) exp(ω(Y )),

where g(X) is an arbitrary function in X and

ω(Y ) =
∫ Y

dY ′ 72

a
√

a2 − 12(a − √
a2 − 12)

.

Finally the primary variable ũ1 is given by

ũ1 = 1

f̃ X

= exp(−ω(Y ))

gX

.

Furthermore,

ũ0 = −ũ1Ŝ0X = −36g eω(Y )

a
√

a2 − 12(a − √
a2 − 12)

,

ũ−1 = −Ŝ1X = −648g2gX e3ω(Y )

(a2 − 12)3/2(a − √
a2 − 12)3

,

· · ·
It can be verified that ũ1, ũ0, ũ−1 satisfy (57). And we obtain another explicit solution of the
first dHD flow which is not degenerate (as that in example 1).

Example 3. The case (M,N) = (2, 3): let Sz|z̄=0 = az2 + bz + c and Y = T2, T = T3.
Similarly, using the method of characteristic and condition (61), we obtain the expansion as
z → ∞:

S = T z3 + Yz2 + f̃ (X, Y, T )z + Ŝ0(X, Y, T ) + Ŝ1(X, Y, T )/z + · · ·
with

3T = −3

4
+

3

8a
+

1

32a2
((1 − 8a)3/2 − 1),

2Y = b

8a2
(1 − 4a − √

1 − 8a),

f̃ (X, Y, T ) = c

4a
(1 − √

1 − 8a) − b2

8a2

(
1 +

4a − 1√
1 − 8a

)
,

Ŝ0 = − bc

2a

(
1 − 1√

1 − 8a

)
+

b3

12a2

(
1 − 1 − 12a

(1 − 8a)3/2

)
,

Ŝ1 = 1√
1 − 8a

(
2b2

1 − 8a
+ c

)2

.
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So

a(T ) = (36T + 1) ± (1 − 12T )3/2

18(1 + 4T )2
,

b(Y, T ) = 16a2Y

1 − 4a − √
1 − 8a

,

c(X, Y, T ) = 4a

1 − √
1 − 8a

(
f̃ (X, Y, T ) − 32a2Y 2

√
1 − 8a(1 − 4a − √

1 − 8a)

)
.

To determine f̃ , we plug the above expression into the dynamic equation (deriving from
(40), (41) as in the proof of lemma 1):

f̃ Y = 2Ŝ0X

f̃ X

, f̃ T = 3
S1X

f̃ X

− 3
S2

0X

f̃ 2
X

, (68)

and obtain

f̃ Y = 4b√
1 − 8a

= 64a2

√
1 − 8a(1 − 4a − √

1 − 8a)
Y.

So

f̃ (X, Y, T ) = 32a2

√
1 − 8a(1 − 4a − √

1 − 8a)
Y 2 + g(X, T ).

Hence

f̃ T = gT +

(
32a2

√
1 − 8a(1 − 4a − √

1 − 8a)

)
T

Y 2

= 48a2

√
1 − 8a(1 − 4a − √

1 − 8a)
g + O(Y 2)

= 6
√

1 − 8a

1 − 12T
g + O(Y 2)

which implies

g(X, T ) = C(X) eω(T ), ω(T ) =
∫ T

dT ′ 6
√

1 − 8a(T ′)
1 − 12T ′ ,

for an arbitrary function C(X). Finally the primary variable ũ1 is given by

ũ1 = 1

f̃ X

= e−ω(T )

C ′(X)
.

Hence

ũ0 = − 64a2Y√
1 − 8a(1 − √

1 − 8a)2
,

ũ−1 = 8a

1 − 8a − √
1 − 8a

(
2b2

1 − 8a
+

4a

1 − √
1 − 8a

C(X) eω(T )

)
eω(T )C ′(X),

· · · .
We can justify that ũ1, ũ0, ũ−1 satisfy (57), (58) for k = 0.

To conclude this section, we remark that for any (M,N, s) = (M, 3, s),M > 0, s � 0,
it is impossible to get any (2 + 1)-dHD equation from the Beltrami equation

Sz̄ = θ(1 − |z|)z̄s

M∑
m�0

pm(z)(Sz)
m, (69)
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with

S =
∑
n�0

cn(z)z̄
n(s+1), |z| < 1, (70)

S|z̄=0 = c0 = a1z + a2z
2 + a3z

3. (71)

First of all, substituting (70) into (69), we obtain the recursive formula

cn+1 = 1

(n + 1)(s + 1)

M∑
m�0

pm(z)

( ∑
r1+···+rm=n

c′
r1

· · · c′
rm

)
, n � 0.

Also, to have the expansion,

S = T z3 + Yz2 + f̃ (X, Y, T )z + Ŝ0(X, Y, T ) + Ŝ1(X, Y, T )/z + · · · ,
as z → ∞, we impose condition [18]

deg pM = 0, deg pM−1 = 2, deg pM−2 = 4, . . . . (72)

Thus the recursive formula and (71) imply

c1 = 1

s + 1


pM c′

0 × · · · × c′
0︸ ︷︷ ︸

M

+ pM−1 c′
0 × · · · × c′

0︸ ︷︷ ︸
M−1

+ · · · + p1c
′
0 + p0




= 1

s + 1
{pM [(3a3)

Mz2M + (3a3)
M−1(2a2)z

2M−1

+ {(3a3)
M−1a1 + (3a3)

M−2(2a2)
2}z2M−2

+ {(3a3)
M−2(2a2)a1 + (3a3)

M−3(2a2)
3}z2M−3 + · · ·]

+ pM−1[(3a3)
M−1z2(M−2) + · · ·]

· · ·
+ p1(3a3z

2 + 2a2z + a1) + p0}
= P2M(a3)z

2M + P2M−1(a3, a2)z
2M−1

+ (P2M−2,1(a3)a1 + P2M−2,2(a3, a2))z
2M−2

+ (P2M−3,1(a3, a2)a1 + P2M−3,2(a3, a2))z
2M−3

+ lower order terms in z,

where Pk, Pk,i are polynomials. Similarly, the coefficients of the four leading z-terms in cn

are respectively of the form

Q3(a3), Q2(a3, a2),

Q1,1(a3, a2) + Q1,2(a3, a2)a1, Q0,1(a3, a2) + Q0,2(a3, a2)a1.

Therefore, plugging these cn into (70) and using (72), for ∀M,∀s, as z → ∞, the four
leading z-terms of S are

R3(a3)z
3 = T z3, R2(a3, a2)z

2 = Yz2,

(R11(a3)a1 + R12(a3, a2))z = f̃ z, R01(a3, a2)a1 + R12(a3, a2) = Ŝ0,

where RiRkj are the polynomials. So

a3 = a3(T ), a2 = a2(Y, T ), a1 = a1(X, Y, T ),
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and hence the dynamic equation (68) yields

f̃ Y = 2
Ŝ0X

f̃ X

= 2
R01a1X

R11a1X

= 2
R01

R11
(Y, T ).

Integrating both sides, we then derive f̃ (X, Y, T ) = F(Y, T )+G(X, T ). So the dHD solution
obtained is ũ1 = 1/f̃ X = 1/GX which depends only on (X, T ). Comparison of these solutions
with the hodograph method in [3, 22] could be interesting and needs further investigation.
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